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We investigate the nonlinear dynamics of turbulent shear flows, with and without
rotation, in the context of a simple but physically motivated closure of the equation
governing the evolution of the Reynolds stress tensor. We show that the model
naturally accounts for some familiar phenomena in parallel shear flows, such as the
subcritical transition to turbulence at a finite Reynolds number and the occurrence
of a universal velocity profile close to a wall at large Reynolds number. For rotating
shear flows we find that, depending on the Rayleigh discriminant of the system, the
model predicts either linear instability or nonlinear instability or complete stability
as the Reynolds number is increased to large values. We investigate the properties
of Couette–Taylor flows for varying inner and outer cylinder rotation rates and
identify the region of linear instability (similar to Taylor’s), as well as regions of finite-
amplitude instability qualitatively compatible with recent experiments. We also discuss
quantitative predictions of the model in comparison with a range of experimental
torque measurements. Finally, we consider the relevance of this work to the question
of the hydrodynamic stability of astrophysical accretion disks.

1. Introduction
Turbulent motion in the flow of an incompressible fluid has consistently eluded a

satisfying mathematical description in over a century of investigation. The governing
Navier–Stokes equations, although involving only a relatively simple nonlinearity,
conceal a remarkable wealth of complex behaviour. Even in the simplest problem
of the onset of turbulent motion in a parallel shear flow, the classical approach
based on a linear analysis of normal modes fails spectacularly to account for the
basic experimental results (e.g. Drazin & Reid 1981). A better insight into the
transition to turbulence has been gained more recently through studies of the transient
amplification of disturbances in linear theory (Butler & Farrell 1992), which, when
coupled with an appropriate nonlinear feedback, allows perturbations to be sustained
(e.g. Baggett & Trefethen 1997). The direct computation of nonlinear disturbances
in the form of (possibly unstable) steady solutions or travelling waves that act as
precursors of the turbulent dynamics (Nagata 1990; Waleffe 1997) has also shed light
on the process of transition.

By its nature, fully developed turbulence demands a statistical description. Reynolds
(1895) established the principles of a statistical theory, showing that correlations
between components of the fluctuating velocity field provide a stress that influences
the bulk motion. The analogy between this turbulent transport of momentum and
the viscous transport associated with thermal molecular motion in kinetic theory
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suggested the concept of eddy viscosity, introduced by Boussinesq (1877). Later,
Prandtl’s (1925) theory of the mixing length gave a predictive expression for the eddy
viscosity that provided a remarkable quantitative agreement with experimental data
such as the mean flow rate in turbulent pipe flow (Schlichting 1979).

Despite the success of mixing-length theory, much effort has been expended in a
search for more accurate representations of the Reynolds stress in turbulent flows,
especially in engineering applications. As reviewed by Speziale (1991), the more
successful approaches start from the exact equation governing the evolution of the
Reynolds stress and apply a procedure of closure modelling to deal with the numerous
intractable terms that arise. Through successive algebraic development accompanied
by a large number of parameters, such models are able to fit an increasing range of
experimental or numerical results. However, in our view, one disadvantage of this
approach in its current state is a loss of physical interpretation of those terms derived
from complicated algebraic constructions. Moreover, as noted by Speziale (1991),
some of these models tend to perform poorly in situations for which they were not
calibrated, such as rotating shear flows.

Astrophysics provides examples of naturally occurring shear flows in which rotation
is an essential feature. Accretion disks (e.g. Pringle 1981) are usually thin disks of gas
in circular orbital motion around a central star or black hole, and are involved in the
processes of star and planet formation as well as being responsible for some of the
most luminous sources in the Universe. According to Kepler’s third law, the angular
velocity of the gas depends on the distance from the centre as Ω ∝ r−3/2, and an
outstanding question of potentially profound significance is whether hydrodynamic
turbulence occurs in these situations (e.g. Balbus & Hawley 1998). While it is true that
the Reynolds number is exceedingly large (Re > 1014; Frank, King & Raine 2002),
nevertheless the centrifugal instability of Rayleigh (1917) does not occur because the
specific angular momentum r2Ω increases outwards (the same criterion was derived
by Solberg for homentropic compressible fluids; see Tassoul 1978), and no other
suitable hydrodynamic instability has been identified.

Historical experiments by Taylor (1923, 1936a, b) and Wendt (1933) on Couette–
Taylor flow between differentially rotating cylinders have been adduced in the hope
of a resolution of this issue (Richard & Zahn 1999). The experiments suggest that
turbulence can be sustained even in certain apparently Rayleigh-stable situations such
as a Couette–Taylor flow in which only the outer cylinder rotates. In this case the
turbulent state is presumably accessed through a nonlinear shear instability of the
laminar state associated with a subcritical bifurcation, but the wider applicability
of this finding is not well understood. The situation is not helped by the dearth
of modern experiments and the fact that Taylor’s findings have been challenged by
Schultz-Grunow (1959).

In this paper we investigate the nonlinear dynamics of turbulent shear flows, with
and without rotation, in the context of a simple but physically motivated closure
of the Reynolds-stress equation. Our approach differs from that of the conventional
closure models used in engineering applications. We aim to study a minimal system
in which the modelled nonlinear terms have a clear interpretation and are as few
in number as is compatible with the physical requirements. Indeed, in astrophysical
applications the added complexity of other physical processes (convection, magnetic
fields, radiative transfer, etc.) forbids anything but a minimal approach in turbulence
modelling. In the present context of purely hydrodynamic turbulence this approach
allows us to explore the dynamical and nonlinear behaviour in some detail without
losing sight of the physical problem.
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The remainder of this paper is organized as follows. We formulate the model
in § 2. Next, in § 3, we examine the local properties of the model in the contexts
of homogeneous shear turbulence, with and without rotation, and turbulent shear
flow past a wall. We also compare the model with others available in the literature.
Section 4 concerns the problem of Couette–Taylor flow. The results are summarized
and discussed in § 5.

2. A simple Reynolds-stress model for turbulent shear flows
The flow of an incompressible fluid is governed by the Navier–Stokes equations

(∂t + uj∂j )ui = −∂ip + ν∂jjui, (2.1)

∂iui = 0, (2.2)

where ui is the velocity, p is the modified pressure (being the pressure divided by
the uniform density ρ, plus the gravitational potential), ν is the uniform kinematic
viscosity, and we make use of the Cartesian tensor notation. Following a standard
technique, the velocity and pressure may be separated into mean and fluctuating
parts, e.g.

ui = ūi + u′
i , 〈u′

i〉 = 0, (2.3)

where the angle brackets denote a suitable averaging procedure. We readily obtain
the averaged Navier–Stokes equations,

(∂t + ūj ∂j )ūi = −∂ip̄ + ν∂jj ūi − ∂jRij , (2.4)

∂iūi = 0, (2.5)

where

Rij = 〈u′
iu

′
j 〉 (2.6)

is the Reynolds-stress tensor divided by the density.
From the fluctuating parts of the Navier–Stokes equations it is possible to obtain

an exact equation for Rij in the form

(∂t + ūk∂k)Rij + Rik∂kūj + Rjk∂kūi − ν∂kkRij

= −2ν〈(∂ku
′
i)(∂ku

′
j )〉 − 〈u′

iu
′
k∂ku

′
j + u′

ju
′
k∂ku

′
i〉 − 〈u′

i∂jp
′ + u′

j ∂ip
′〉. (2.7)

There is no difficulty in retaining the exact form of the linear terms on the left-hand
side of this equation, which represent the advection of the turbulent fluctuations by the
mean flow, their interaction with the mean velocity gradient and the viscous diffusion
of the Reynolds stress. The difficult terms on the right-hand side cannot be written
exactly in terms of Rij , unless further information is known about the turbulence,
and therefore require a closure model. However, the physical effects of these terms
are quite well understood and this insight can be used as a guide in constructing the
model. In particular, the viscous term on the right-hand side is negative definite and
causes a dissipation of the turbulent kinetic energy at a rate that is usually considered
to be independent of ν in the limit of large Reynolds number. The other terms are
conservative but allow for a redistribution of energy among the components of Rij ,
and it is well established that anisotropic turbulence has a tendency to return to
isotropy (e.g. Rotta 1951).

Recently, one of us proposed a simple model of the stresses in astrophysical
magnetohydrodynamic turbulence (Ogilvie 2003). In the special case of hydrodynamic
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turbulence in an incompressible fluid, the model reduces to the simpler form

(∂t + ūk∂k)Rij + Rik∂kūj + Rjk∂kūi = −C1

L
R1/2Rij − C2

L
R1/2

(
Rij − 1

3
Rδij

)
, (2.8)

where R = Rii is the mean-square turbulent velocity, C1 and C2 are positive
dimensionless constants of order unity, and L is a characteristic length scale related
to the geometrical constraints that limit the size of coherent structures. This model
was intended to represent the typical astrophysical situation in which the Reynolds
number is exceedingly large and there are no solid surfaces on which boundary layers
may form. The modelled nonlinear terms represent two well-known physical processes
that are essential in the dynamics of turbulent shear flows. The C1 term represents the
viscous dissipation of turbulent motion, at a rate related to the characteristic time
scale L/R1/2 of the largest eddies. The C2 term, which only redistributes energy among
the components of Rij , represents the tendency of the turbulence to return to isotropy
on a similar time scale. This formulation gives arguably the simplest nonlinear model
involving these two essential effects, which also guarantees that the Reynolds tensor
remains positive definite and therefore realizable by a genuine velocity field.

In the present paper we are interested in applying the model to laboratory shear
flows in which the Reynolds number is not exceedingly large and in which boundary
layers are present. We therefore enhance the model by retaining the viscous diffusion
of the Reynolds stress and including an additional term to model viscous dissipation
on the right-hand side:

(∂t + ūk∂k)Rij + Rik∂kūj + Rjk∂kūi − ν∂kkRij

= −C1

L
R1/2Rij − C2

L
R1/2

(
Rij − 1

3
Rδij

)
− Cνν

L2
Rij . (2.9)

Here Cν is a third positive dimensionless constant of order unity, and the Cν term
allows for the fact that, at low or moderate Reynolds numbers, when an efficient
turbulent cascade does not form, the viscous dissipation rate is directly proportional
to the viscosity. Hence in what follows, although we often denote as ‘turbulent’ any
flow for which R > 0, the Reynolds stresses for relatively low Reynolds numbers are
more likely to represent the average behaviour of large-scale coherent structures (such
as Taylor vortices in the case of the Couette–Taylor system). Wavelike behaviour, on
the other hand, cannot be well represented in this formalism owing to the assumed
locality of the dissipation.

In the original model L was related to the thickness of an accretion disk; in
a stratified atmosphere it might be related to the density scale height. It was not
necessary to give a precise definition of L owing to the invariance of the original
model under a rescaling

L �→ λL, C1 �→ λC1, C2 �→ λC2. (2.10)

In the present paper, however, we will make a definite choice for L appropriate to
the geometrical constraints of the problem, and we will attempt to fix the values of
the coefficients by comparison with experimental results.

It is straightforward, as in Ogilvie (2003), to allow for a uniform rotation of the
frame of reference with angular velocity Ωi . In this case we obtain additional Coriolis
terms of the form

(∂t + ūk∂k)Rij + Rik∂kūj + Rjk∂kūi + 2εjklΩkRil + 2εiklΩkRjl + · · · . (2.11)
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The expression for the Reynolds-stress equation (2.8) in a general orthogonal
curvilinear coordinate system is given in Appendix A, together with an explicit
expression for ∂kkRij in cylindrical polar coordinates.

3. Local properties of the model
3.1. Homogeneous shear turbulence

We first consider the idealized situation of a uniform shear flow,

ū = Sy ex, (3.1)

where (x, y, z) are Cartesian coordinates and the shear rate S is prescribed. We also
allow for a uniform rotation of the frame of reference with angular velocity

Ω = Ω ez. (3.2)

We assume that the geometrical constraints are such that L is constant. This can
be achieved by performing a numerical simulation in a periodic box with no solid
boundaries (Rogallo 1981; Pumir 1996), in which case L is related to the size of the
box. This system is the only one in which the size of the coherent structures can be
limited without imposing additional boundary conditions that would result in the loss
of the large-scale homogeneity of the flow. The turbulence may therefore be assumed
to be statistically homogeneous, although it is anisotropic. In this case the Reynolds
stress depends only on time and the model reduces to a system of ordinary differential
equations constituting an autonomous nonlinear dynamical system. We find, in detail,

∂tRxx + 2(S − 2Ω)Rxy = − (C1 + C2)

L
R1/2Rxx +

C2

3L
R3/2 − Cνν

L2
Rxx,

∂tRxy + 2ΩRxx + (S − 2Ω)Ryy = − (C1 + C2)

L
R1/2Rxy − Cνν

L2
Rxy,

∂tRxz + (S − 2Ω)Ryz = − (C1 + C2)

L
R1/2Rxz − Cνν

L2
Rxz,

∂tRyy + 4ΩRxy = − (C1 + C2)

L
R1/2Ryy +

C2

3L
R3/2 − Cνν

L2
Ryy,

∂tRyz + 2ΩRxz = − (C1 + C2)

L
R1/2Ryz − Cνν

L2
Ryz,

∂tRzz = − (C1 + C2)

L
R1/2Rzz +

C2

3L
R3/2 − Cνν

L2
Rzz.




(3.3)

It can easily be seen that the two components Rxz and Ryz are decoupled from the
others; these quantities may be expected to vanish on grounds of symmetry, as is
confirmed below.

The system is characterized by a Reynolds number

Re =
L2|S|

ν
(3.4)

and an inverse Rossby number

Ro−1 =
2Ω

S
. (3.5)

The Rayleigh discriminant of the rotating shear flow is

Φ = 2Ω(2Ω − S). (3.6)
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We recall that Φ < 0 is a sufficient condition for the instability of a rotating shear
flow in the absence of viscosity. We refer informally to the situations Φ < 0, Φ = 0 and
Φ > 0 as ‘Rayleigh-unstable’, ‘Rayleigh-neutral’ and ‘Rayleigh-stable’ even though the
criterion is limited in its strict applicability. It is convenient to define a dimensionless
Rayleigh discriminant

φ = Ro−1(Ro−1 − 1) (3.7)

and a Taylor number

Ta = −Re2φ. (3.8)

The dynamical system (3.3) possesses a trivial fixed point, Rij = 0, which represents
the laminar state. Linear analysis indicates that the trivial fixed point is unstable
with respect to infinitesimal perturbations when the Taylor number exceeds a positive
critical value,

Ta > Tac =
C2

ν

4
. (3.9)

Although a linear instability of this kind is possible only in Rayleigh-unstable
situations, we demonstrate below that turbulent states can be accessed through a
nonlinear instability of the laminar state under a wider range of conditions.

The dynamical system may also possess non-trivial fixed points, representing states
of statistically steady and homogeneous turbulence in which viscous dissipation is
compensated by an extraction of energy from the shear flow. Such states may be
either stable or unstable; even if it does not represent a statistical endpoint of the
dynamics, an unstable solution may play a transient role in the dynamics by providing
an organizing structure in the dynamical phase space. Searching for non-trivial fixed
points, we obtain the condition

2C2

3L
S2R1/2 =

{[
(C1 + C2)

L
R1/2 +

Cνν

L2

]2

+ 8Ω(2Ω − S)

}[
C1

L
R1/2 +

Cνν

L2

]
, (3.10)

which may be written as a cubic equation for the dimensionless r.m.s. turbulent
velocity u =R1/2/L|S|,

2C2

3
u =

{[
(C1 + C2)u +

Cν

Re

]2

+ 4φ

}(
C1u +

Cν

Re

)
. (3.11)

The behaviour of u as a function of Re depends on the dimensionless Rayleigh
discriminant φ of the rotating shear flow. In the present model two values of φ with
special significance are

φ− = − C2

12(C1 + C2)
, φ+ =

C2

6C1

. (3.12)

Excluding degenerate intermediate cases, we identify four intervals of interest and
illustrate in figure 1 the corresponding bifurcation diagrams in which u is plotted
against Re. Although the qualitative features of the set of bifurcation diagrams do not
depend on the parameters C1, C2 and Cν , we make a particular selection of ‘standard’
parameters which is explained in § 3.4 below.

(a) − 1
4

� φ <φ−. As Re is increased, the laminar state loses stability to a branch
of turbulent solutions at a supercritical bifurcation.
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Figure 1. Bifurcation diagrams for homogeneous shear flow with standard model parameters
(C1 = 0.412, C2 = 0.6 and Cν =12.48) and four different values of the dimensionless Rayleigh
discriminant φ. For these parameter values, φ− � −0.049 and φ+ � 0.243. Solid and dotted
lines indicate stable and unstable branches.

(b) φ− < φ < 0. The turbulent branch bifurcates subcritically from the laminar state
at the point of linear instability. There is an interval of Re in which stable laminar
and turbulent solutions coexist.

(c) 0< φ < φ+. The laminar state is linearly stable for all Re and the turbulent
branch is disconnected from it. Only the upper turbulent branch is stable, but the
unstable lower branch assists in diminishing the basin of attraction of the laminar
state as Re is increased.

(d) φ+ < φ < ∞. No turbulent solution exists and the laminar state is stable for all
Re.

For non-rotating shear flows, or more generally, flows with zero angular-momentum
gradient (φ = 0), the laminar state is linearly stable for all finite values of Re. However,
it is unstable with respect to algebraically growing disturbances at Re = ∞ and a
branch of turbulent solutions bifurcates subcritically at this point (figure 2).

The conclusion of this analysis is that, according to our model, statistically steady
and homogeneous turbulence can be sustained in a rotating uniform shear flow
at sufficiently large Reynolds number provided that the flow is Rayleigh-unstable,
Rayleigh-neutral or else Rayleigh-stable by a sufficiently small margin. For Rayleigh-
neutral or slightly Rayleigh-stable flows the transition to turbulence occurs through a
nonlinear instability of the laminar state, which has a diminishing basin of attraction
as Re → ∞. These properties are in accord with the generally accepted model of
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Figure 2. Bifurcation diagram for homogeneous shear flow with standard model parameters
and vanishing Rayleigh discriminant, corresponding to a non-rotating shear flow. The branch
of turbulent solutions bifurcates subcritically from the laminar state at Re = ∞.

transition to turbulence in shear flows (e.g. Grossmann 2000). Even though our
model is designed principally to describe the statistical properties of fully developed
turbulence, it appears to give a description of the onset of turbulence that is at least
qualitatively reasonable.

Through straightforward algebra it can be shown that the turbulent solutions share
the following properties:

(a) Rij is positive definite and therefore the solutions are realizable;
(b) sign(−Rxy) = sign(S) and therefore the turbulent transport of momentum has

the same sense as viscous transport;
(c) Rxz = Ryz = 0 as expected on grounds of symmetry;
(d) the solutions are stable with respect to arbitrary perturbations of Rxz and Ryz.
In the limit Re → ∞ equation (3.11) has at most one solution for which u tends

to a positive limiting value. This solution exists when φ < φ+, i.e. when the flow is
Rayleigh-unstable, Rayleigh-neutral, or else Rayleigh-stable by a sufficiently small
margin (Ogilvie 2003). In detail, the limiting solution is

Rxx =

[
3(1 − Ro−1)C1 + C2

C1 + C2

]
R

3
,

Rxy = − C1

2LS
R3/2,

Ryy =

(
3Ro−1C1 + C2

C1 + C2

)
R

3
,

Rzz =

(
C2

C1 + C2

)
R

3
,




(3.13)

with

R =

[
C2 − 6Ro−1(Ro−1 − 1)C1

C1(C1 + C2)2

]
2

3
L2S2 =

4(φ+ − φ)

(C1 + C2)2
L2S2. (3.14)

For a fixed Rossby number satisfying the condition φ <φ+, the turbulent momentum
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transport has the dependence

−Rxy =
4C1

(C1 + C2)3
(φ+ − φ)3/2L2S|S| ∝ L2S|S|, (3.15)

as also occurs in Prandtl’s mixing-length theory. In our model, however, this result is
obtained only in the limit of large Re, and the coefficient of proportionality depends
on the Rossby number if the flow is rotating.

The turbulent states are always anisotropic owing to the effects of shear and
rotation. In our model, the dimensionless anisotropy tensor

bij =
Rij

R
− 1

3
δij , (3.16)

which describes the shape of the Reynolds tensor, depends only on the ratio C2/C1

and on the Rossby number, when the Reynolds number is sufficiently large. When
C2/C1 is small, the tendency to return to isotropy is weak and the stress becomes
highly anisotropic. In principle, the ratio C2/C1 could be constrained through a
comparison with experimental data on anisotropy. We return to this point in § 3.4
below.

3.2. Turbulent shear flow past a wall

In this section we analyse the simplest problem involving a wall-bounded turbulent
shear flow. The solution will serve later as an asymptotic description of the turbulent
boundary layers found in more complicated situations.

We consider the non-rotating parallel shear flow ū = ūx(y) ex in the semi-infinite
region y > 0 bounded by a smooth, stationary wall at y = 0 and forced by a shear
stress Txy > 0 at y = ∞. Even in a situation such as Couette–Taylor flow, it is usually
permissible to neglect rotation in the turbulent boundary layers because the local
shear rate is much larger than the rotation rate. Since the presence of the wall
provides the only geometrical constraint on the turbulent structures, we set L = y, as
is common in applications of mixing-length theory to wall-bounded flows. Indeed,
throughout the remainder of this paper, we set L equal to the distance to the nearest
wall.

We seek steady solutions of the averaged equations in which the mean quantities
depend only on y, and with the expected symmetry property Rxz = Ryz = 0. The
x-component of the averaged Navier–Stokes equation,

0 = ν∂yyūx − ∂yRxy, (3.17)

implies

ν∂yūx − Rxy = Txy = constant. (3.18)

The non-trivial components of the Reynolds-stress equation in our model are

2Rxy∂yūx = − (C1 + C2)

L
R1/2Rxx +

C2

3L
R3/2 + ν∂yyRxx − Cνν

L2
Rxx,

Ryy∂yūx = − (C1 + C2)

L
R1/2Rxy + ν∂yyRxy − Cνν

L2
Rxy,

0 = − (C1 + C2)

L
R1/2Ryy +

C2

3L
R3/2 + ν∂yyRyy − Cνν

L2
Ryy,

0 = − (C1 + C2)

L
R1/2Rzz +

C2

3L
R3/2 + ν∂yyRzz − Cνν

L2
Rzz,




(3.19)

subject to the no-slip boundary conditions ūx = Rij =0 at y =0.
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We rewrite the equations in a dimensionless form by means of the standard
transformations

ūx(y) = v(η)
√

Txy, Rij (y) = rij (η)Txy, η =
y
√

Txy

ν
. (3.20)

Observing the property rzz = ryy , which implies r = rxx + 2ryy , we obtain the reduced
problem

v′ − rxy = 1, (3.21)

2rxyv
′ = − (C1 + C2)

η
r1/2rxx +

C2

3η
r3/2 + r ′′

xx − Cν

η2
rxx,

ryyv
′ = − (C1 + C2)

η
r1/2rxy + r ′′

xy − Cν

η2
rxy,

0 = − (C1 + C2)

η
r1/2ryy +

C2

3η
r3/2 + r ′′

yy − Cν

η2
ryy,




(3.22)

with boundary conditions v(0) = rij (0) = 0.
The desired behaviour at η = ∞ can be deduced by analysing the far-field limit

η 
 1, for which we obtain the asymptotic form

v′ ∼ v′
1η

−1 + v′
2η

−2 + · · · ,
rij ∼ rij0 + rij1η

−1 + · · · ,

}
(3.23)

with

v′
1 =

C1

2
r

3/2
0 , r0 =

(
6

C1C2

)1/2

(C1 + C2), (3.24)

rxx0 =
(3C1 + C2)

3(C1 + C2)
r0, rxy0 = −1, ryy0 =

C2

3(C1 + C2)
r0. (3.25)

The reduced problem is universal, involving no parameters other than the model
parameters C1, C2 and Cν . To solve it numerically, we use a finite-difference Newton–
Raphson relaxation method on a stretched mesh, starting from an initial guess
with rij = rij0 and v = η. The outer boundary condition r ′

ij (ηout) = 0, where ηout 
 1,

imposes the desired far-field behaviour with adequate fidelity. We choose ηout = 105.
The desired universal boundary-layer solution is shown in figure 3. The stability of
this solution has been confirmed using a time-dependent numerical method.

In the Prandtl–von Kármán analysis of turbulent boundary layers (e.g. Schlichting
1979) the velocity profile for η 
 1 is given as

v � A ln η + B (3.26)

where A and B are dimensionless empirical constants, and it is customary to refer
to κ = 1/A as the von Kármán constant. This ‘universal velocity profile’, ‘log law’
or ‘law of the wall’ is generally in excellent agreement with experimental data. The
values traditionally assigned on the basis of Nikuradse’s experiments in the 1930s
are κ =0.41 and B = 5.2 (for a smooth wall). However, recent experiments at higher
Reynolds numbers show a much superior fit with κ =0.436 and B = 6.15 (Zagarola
& Smits 1998).

In our model the integrated velocity profile for η 
 1 is

v(η) = v0 + v′
1 ln η − v′

2

η
+ O(η−2), (3.27)
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Figure 3. Universal boundary-layer solution for turbulent shear flow past a wall with standard
model parameters. The dimensionless Reynolds stress components rxx , ryy = rzz and −rxy are
shown.
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Figure 4. Contours of constant κ with (from bottom to top) κ = 0.5, 0.46, 0.436 (solid line),
0.42, 0.38, 0.34 and 0.3.

which is asymptotically equivalent to the Prandtl–von Kármán velocity profile; thus
we identify the von Kármán constant as

κ =
1

v′
1

=
2

C1

[
C1C2

6(C1 + C2)2

]3/4

. (3.28)

The von Kármán constant depends only on C1 and C2 and can therefore be fitted
independently of Cν . Figure 4 shows the relation between C1 and C2 for constant κ .
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The additive constant B = v0 cannot be deduced from the asymptotic analysis but
must instead be determined from a numerical solution of the problem including
the viscous sublayer close to the wall. Numerical integration of the boundary layer
equations shows that v0 depends primarily on Cν , as shown in figure 5. For simplicity,
in that figure we have reduced the parameter space by imposing the constraint
κ = 0.436 (Zagarola & Smits 1998).

3.3. Comparison with other models

In comparison with other Reynolds-stress models available in the literature, our
model appears quite simplistic (e.g. Speziale 1991). The viscous dissipation rate is
given by

ε =
C1

2L
R3/2 +

Cνν

2L2
R (3.29)

and we do not attempt to model a separate time-dependent equation for this quantity.
One reason for this is that the length scale L is imposed by the geometrical constraints
in our problem, and is not free to expand as occurs when turbulence is generated
in a localized region within a larger system. Instead, we allow for the effects of
a finite Reynolds number by specifying a dissipation time scale that is related to
the characteristic time scale L/R1/2 of the largest eddies in high-Reynolds-number
turbulence, and to the viscous time scale L2/ν at lower Reynolds numbers.

In freely decaying turbulence with no mean shear or rotation, the return to isotropy
is described in our model by the equation

dbij

dτ
=

R

ε

dbij

dt
= −

(
2C2

C1 + CννL−1R−1/2

)
bij , (3.30)

where

bij =
Rij

R
− 1

3
δij (3.31)
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is the anisotropy tensor and τ is a dimensionless time variable (e.g. Speziale 1991). In
the limit of large Reynolds number we therefore obtain a linear return to isotropy,
equivalent to the one introduced first by Rotta (1951).

Furthermore, we do not attempt to model the ‘rapid pressure–strain correlation’, for
which elaborate algebraic models have been proposed (e.g. Sjögren & Johansson 2000).
Through this simplification we may lose some accuracy. However, it is the treatment
of this term that has given rise to models that deal poorly with rotating shear flows.
For example, the widely adopted model of Launder, Reece & Rodi (1975) is not
consistent with Rayleigh’s criterion in the sense that it does not permit turbulence to
be sustained at high Reynolds number in certain situations where Rayleigh’s stability
criterion is not satisfied (Speziale 1991), perhaps because a realizability condition of
some kind is implicitly violated. It is to be hoped that a way can be found to model
the rapid pressure–strain correlation in future with due regard to Rayleigh’s criterion.

3.4. Summary of the constraints on the parameters C1, C2 and Cν

We have purposely adopted a simple closure model for the Reynolds-stress equation
so that we can focus on the nonlinear dynamical properties of the system rather than
engaging in a lengthy exercise of parameter fitting. Nevertheless, because the model
naturally predicts a logarithmic velocity profile close to a wall, it makes sense to
apply the two accurate constraints κ = 0.436 and v0 = 6.15 provided by the very high-
quality experimental data on wall-bounded turbulent shear flows in the Superpipe
experiment (Zagarola & Smits 1998). The first constraint provides a relation between
C1 and C2 only, whereas the second (which applies only for a smooth wall) yields Cν

provided that C1 and C2 are known. A third constraint, which would be required to
fix all three parameters of our model, might in principle be provided by experimental
data on the anisotropy of the Reynolds stress in homogeneous shear turbulence, or
on the return to isotropy of homogeneous turbulence. In fact, the limitations of the
three-parameter model mean that no choice of the parameters can accurately match
all experimental results. For example, Choi & Lumley (2001) find that the return
to isotropy of homogeneous turbulence is more complicated than is assumed in any
available closure model. In § 4.2 below we compare the predictions of our model with
data from Couette–Taylor experiments, and tentatively deduce an approximate value
of C2 � 0.6. Hence in what follows (unless otherwise mentioned) we shall take as
standard parameters C1 = 0.412, C2 = 0.6 and Cν =12.48, which yield κ = 0.436 and
v0 = 6.15 as required. The predicted boundary-layer velocity profile with this choice
of parameters is compared with the experimental measurements of Zagarola & Smits
(1998) in figure 6.

4. Couette–Taylor flow
Couette–Taylor flow between differentially rotating coaxial cylinders is a seemingly

simple dynamical system that has been found to exhibit a rich variety of nonlinear
behaviour. Much of this interesting dynamics occurs close to the onset of Rayleigh’s
centrifugal instability, albeit in a confined setting and in the presence of viscosity.
Our main interest here is in the existence and properties of turbulent states in
Couette–Taylor flow at large Reynolds numbers, rather than the behaviour close
to the onset of instability. This aspect of the problem has received rather little
attention from experimentalists or turbulence modellers. Recently, however, arguments
based on the Couette–Taylor system have been made in connection with important
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Figure 6. Solution of the dimensionless boundary-layer problem for turbulent shear flow past
a wall with standard model parameters. The dotted line corresponds to the asymptotic profile
v = (0.436)−1 ln η + 0.615 (Zagarola & Smits 1998) which is their suggested best fit for their
experimental results. The small black dots are the experimental data points from Zagarola &
Smits, corrected for systematic errors according to the prescriptions of McKeon et al. (2003).
The open triangles are the experimental data points from Reichardt (1940).

questions relating to turbulence in astrophysical flows involving differential rotation
(e.g. Richard & Zahn 1999).

Since our Reynolds-stress model is based on a covariant formulation, it naturally
includes the effect of rotation as well as shear. In this section we apply the model to
the Couette–Taylor system, compare its predictions with the available experimental
results and examine the wider consequences of these findings.

4.1. Predictions of the model

4.1.1. Governing equations and numerical solution

We consider the shear flow between two infinite coaxial cylinders located at radii ri

and ro, rotating with angular velocities Ωi and Ωo. Adopting a cylindrical coordinate
system (r, φ, z), we seek steady solutions of the averaged equations in which the mean
quantities depend only on r and the mean flow is azimuthal only: ū = rΩ(r) eφ . In this
case the Reynolds-stress equation in our model reduces to (A 6) and straightforward
algebra yields Rrz =Rφz =0. We choose the scale length L to be the distance to the
nearest wall, namely L = min(r − ri, ro − r).

Experiments on Couette–Taylor flow, using a cylindrical container of finite height
h, are perturbed by end effects, in particular the Ekman circulation, when the aspect
ratio h/(ro − ri) is not very large. We do not attempt to model end effects, but note
their potential significance when comparing our findings with experimental results
(see § 4.2.1).

The angular velocity profile Ω(r) between the cylinders is obtained self-consistently
by solving also the angular momentum conservation equation (the azimuthal com-
ponent of the averaged Navier–Stokes equation),

d

dr
(r2Rrφ + νr2S) = 0 (4.1)
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where S = −r dΩ/dr is the shear rate in cylindrical geometry. Note that equation
(4.1) can be integrated to introduce the torque T between the cylinders,

r2Rrφ + νr2S =
T

2πhρ
. (4.2)

We obtain a ninth-order system of ODEs with one eigenvalue (T ) which requires
ten boundary conditions: Rrr = Rrφ = Rφφ = Rzz = 0 on each boundary, as well as
Ω(ri) = Ωi and Ω(ro) = Ωo. We solve this two-point boundary-value problem
numerically using a Newton–Raphson relaxation method, using the solution for
Re → ∞ as an initial guess (or, whenever applicable, the results of a previous cal-
culation for similar parameters).

In addition to possible turbulent solutions, there is of course the well-known
laminar Couette–Taylor flow Ω(r) = α + β/r2, where α =(Ωor

2
o − Ωir

2
i )(r

2
o − r2

i )
−1

and β = (Ωi − Ωo)r
2
i r

2
o (r

2
o − r2

i )
−1. The local dimensionless Rayleigh discriminant of

the laminar solution is φ(r) = (α/β)2r4 + (α/β)r2. Unlike plane Couette flow, the
laminar Couette–Taylor flow is linearly unstable in certain regions of the parameter
space. Therefore turbulent states may be accessed through either linear or nonlinear
instabilities.

4.1.2. Asymptotic analysis

The results presented in § 3.2 suggest that the system of equations (A 6) and (4.2)
could also be solved approximately by asymptotic matching, between the universal
boundary-layer solution near the wall and a high-Reynolds-number limiting solution
(Re → ∞) in the main body of the fluid. When Re → ∞, the turbulent solution is

R =

[
C2 − 6Ro−1(Ro−1 − 1)C1

C1(C1 + C2)2

]
2

3
L2S2, (4.3)

whenever this is positive, and then

Rrφ =
C1

2LS
R3/2 =

C1

2

(
2

3

)3/2 [
C2 − 6C1Ro−1(Ro−1 − 1)

C1(C1 + C2)2

]3/2

L2S|S|, (4.4)

by direct analogy with results (3.14) and (3.15) of the local analysis. Unfortunately,
there exist no analytical solutions to the angular momentum equation with this
Reynolds stress prescription unless Ro 
 1. The Rossby number of the laminar flow is
large for typical narrow-gap setups; one might therefore hope to use this asymptotic
limit for the study of the turbulent regime also. However, numerical solution of
equations (A 6) and (4.2) reveals that turbulence effectively reduces the shear outside
the boundary layers and prevents the use of the Ro 
 1 asymptotic limit unless the
gap is extremely small (typically, less than a few percent of the average radius). For
completeness, we nevertheless provide such an asymptotic analysis in Appendix B.

4.1.3. Stability diagram and structure of solutions across parameter space

In what follows, we call the Couette–Taylor flow ‘unstable’ whenever there exist
solutions to the equations of the model with R > 0. By doing so, we implicitly
assume that the background noise level is sufficiently high to excite finite-amplitude
instabilities if they exist. Figure 7 shows a stability diagram for corotating cylinders
in the (Reo, Rei) plane (where Reo = droΩo/ν and Rei = driΩi/ν, with d = ro − ri) for
a given geometrical setup (ri/ro =0.7). As predicted by the local analysis, Rayleigh-
stable flows can be subject to finite-amplitude instabilities provided they are notionally
Rayleigh-stable by a small margin only, thus displacing the stability boundary in
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Figure 7. Stability boundaries for Couette–Taylor flow in a fixed geometrical setup
(ri/ro =0.7), predicted with standard model parameters. The black symbols are the predictions
of our model, and delimit the regions of turbulent solutions in the top-left and bottom-right
corners. The open symbols are the data from Richard (2001) for the same geometrical setup.
The solid line is the stability limit according to Rayleigh’s criterion (Ωir
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i = Ωor

2
o ), the dashed

line marks the Keplerian ratio (Ωir
3/2
i =Ωor

3/2
o ) and the dotted line marks solid-body rotation

(Ωi = Ωo).

the top-left corner of the diagram by a small amount. Strong enough shear can
overcome the stabilizing angular-momentum gradient in the case where Reo 
 Rei

and finite-amplitude instabilities are also found in that region (bottom-right corner
of the diagram). The predicted onset of instability in the case of relatively low
Reynolds numbers and also of counter-rotating cylinders is discussed further in § 4.2.3.
Comparison with experimental data from Richard et al. (2001) shows significant
discrepancies with the predictions of the model, though this could be expected
because the aspect ratio of their experimental setup is not large (see the discussion in
§ 4.2.1).

The structure of the solutions in various regions of parameter space, as shown in
figure 8, reflects the physics of turbulent flow. In the case where the outer cylinder is
at rest, the local dimensionless Rayleigh discriminant for the laminar solution is

φ(r) = (r/ro)
4 − (r/ro)

2 (4.5)

and is therefore always negative (Rayleigh-unstable). Viscosity stabilizes the flow
for sufficiently low Reynolds number Rei but the transition to turbulence occurs
directly, through a linear instability (the critical value for the transition depends on
the geometrical setup). Turbulent stresses are largest in the bulk of the fluid, near the
mid-point rm = (ro + ri)/2.

In the case where the inner cylinder is at rest,

φ(r) = (r/ri)
4 − (r/ri)

2 (4.6)

is always positive (Rayleigh-stable). Linear instability is therefore not expected, but
turbulent states may still be accessed through a nonlinear instability. Sufficiently close
to the inner cylinder, in the region where φ < φ+, the local analysis would suggest that
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Figure 8. Structure of solutions for a fixed geometrical setup with ri/ro = 0.7, for three
regions of parameter space in the case of corotating cylinders. The left-hand column shows
the local dimensionless Rayleigh discriminant φ(r); in each figure, the horizontal dotted line
marks the position of the critical value φ+ = C2/6C1 � 0.243. The right-hand column shows
the mean-square turbulent velocity, normalized to its maximum value for clarity. The top
two panels (a) correspond to the case where the outer cylinder is at rest, with the laminar
solution marked as a dotted line, then the outer cylinder rotation rate is steadily increased with
Reo =103 (dashed line), Reo = 105 (short-long dashed line), Reo = 107 (long-dashed line) and
Reo =109 (solid line). The line-style coding is the same for both plots. Panels (b) correspond
to the case when the inner cylinder is at rest, showing the laminar solution (dotted line), then
turbulent solutions for Reo = 105 (dashed line), Reo = 106 (short-long-dashed line), Reo = 107

(long-dashed line) and Reo = 109 (solid line). Panels (c) correspond to the onset of instability
near the Rayleigh stability limit. The outer cylinder rotation is fixed (Reo = 109) and the
inner cylinder rotation is varied. The solution is laminar (dotted line) for Rei = 1.22 × 109,
then becomes successively more turbulent for Rei = 1.24 × 109 (dashed line), Rei = 1.26 × 109

(short-long-dashed line) and Rei = 1.28 × 109 (long-dashed line). The last curve lies further
away from onset, and into the Rayleigh-unstable zone with Rei = 2 × 109 (solid line).

the laminar solution is unstable to finite-amplitude perturbations provided the local
Reynolds number is large enough. Depending on the gap width, two situations may
arise: either 0 <φ <φ+ for all r , or there exists a transition within the fluid between
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a locally stable region and a region of finite-amplitude instability. An equivalent way
of looking at the problem is to note that the stabilizing effect of rotation on the
development of turbulence is weaker near the inner boundary when the inner cylinder
is at rest, and so we expect turbulence to develop first near the inner cylinder (as can
indeed be seen in figure 8).

Finally, we explore the behaviour of solutions near the onset of nonlinear instability
at very high Reynolds number in the region close to the Rayleigh line (Ωir

2
i =Ωor

2
o ).

The transition to turbulence occurs when φ for the laminar solution near the inner
cylinder drops below φ+. This happens in the Rayleigh-stable domain. As Rei is
increased, φ on the outer cylinder drops below 0 which marks the transition to the
Rayleigh-unstable domain.

The structure of the solutions in all three cases seems to suggest that turbulence is
extremely efficient in transporting the applied torque: the marginal solution φ =φ+

is favoured near onset and also in the Rayleigh-stable case far from onset. In the
latter case the solution deviates from the marginal stability solution only in the thin
viscous boundary layers. This behaviour is typically also observed in convection. In
the Rayleigh-unstable case on the other hand, a solution with φ = φ+ > 0 could not
possibly satisfy the applied boundary conditions, and the flow appears to compromise
by choosing an intermediate solution with φ < 0 in a significant part of the domain.

4.2. Comparison with experimental data

4.2.1. Discussion of available data

Since Taylor’s (1923) pioneering work on the stability of fluid flows between two
coaxial rotating cylinders, a wealth of experimental data has been collected on the
dynamical properties of such flows for various aspect parameters (ri, ro, h) and for
a very large region of the (Reo, Rei) parameter space. In particular, Wendt (1933)
and Taylor (1936a, b) presented the most extensive collection of torques and velocity
measurements for turbulent Couette–Taylor flow far from onset, whereas Andereck,
Liu & Swinney (1986) reviewed the successive flow-pattern transitions near onset.

Amongst other notable results, Wendt (1933) studied the contaminating Ekman
flows arising from end effects, which can drive significant deviations from the laminar
Couette–Taylor flow. He proposed an ingenious system including a free top surface
and a differentially rotating split bottom plate to reduce end effects; this setup
is indeed able to reduce meridional flows but not completely. Comparisons of
torque measurements between various bottom boundary conditions revealed that
end effects are especially important for aspect ratios h/d smaller than 40. Wendt
performed experiments with only the outer cylinder rotating, and showed that torque
measurements made with bottom plates corotating with the outer cylinder were
roughly 10% larger than in the case where the bottom plates are stationary for an
aspect ratio of 50, 100% larger for an aspect ratio 23 and 400% larger for an aspect
ratio of 11. Naturally, any theory that assumes axial translational symmetry for the
system (as does the model investigated here) can only be compared with experiments
that have little contamination from end effects, and we may use Wendt’s findings as
a guideline for distinguishing between adequate and inadequate sets of experiments.

Experiments at very high Reynolds number, and with a wide gap (ri/ro = 0.724),
have been performed in the case where only the inner cylinder is rotating by Lathrop,
Fineberg & Swinney (1992) and more recently by Lewis & Swinney (1999). Richard
et al. (2001) have performed such experiments (ri/ro = 0.7) with both inner and outer
cylinders rotating, using split-bottom boundary conditions. Wide-gap setups are well
suited to verify the adequacy of our theory in describing the effects of rotation
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on turbulent shear flows (as opposed to narrow-gap setups, which are principally
dominated by the shear instability). However, all these experiments have too small
(� 25) an aspect ratio to be free of end effects, so we cannot use them reliably for
comparison with our work.

In what follows (§ 4.2.2), we first compare the predictions of our model with the
torque measurements from Wendt (1933) in order to obtain a third constraint on
our parameters C1, C2 and Cν , as anticipated in § 3.4. We then compare the model
to Taylor’s (1936a) data. In § 4.2.3 we look at the predictions of the model for the
onset of linear instability in Couette–Taylor flows and compare it with Taylor’s (1923)
experimental work. Finally, we discuss the stability of Keplerian shear flows in the
light of our model, and compare our predictions with those of Richard & Zahn
(1999) in § 4.2.4.

4.2.2. Torque measurements

Wendt’s (1933) torque measurements present the most extensive results for an
experimental setup with large aspect ratio. By using his narrow-gap data, which
are relatively free from contaminating end effects, we attempt to constrain our
basic parameters further. Wendt presents the results of twelve sets of experiments
for the following setup: h = 50 cm, ro = 14.70 cm and ri = 13.75 cm. For each set of
measurements, the ratio of the rotation rates of the inner and outer cylinders is fixed,
and the Reynolds number† is defined as

Re =
|Ωo − Ωi |rmd

ν
. (4.7)

Wendt plots in his figure 9(c) the ratio of the turbulent to the laminar torque. We
have performed ten suites of numerical calculations where C2 is varied between 0.1
and 1 by increments of 0.1, and for each set have calculated the typical error between
the predictions of our model and Wendt’s experimental data points with the formula

E(C2) =
∑ [

T

Tlam

∣∣∣∣
mod

− T

Tlam

∣∣∣∣
exp

]2

, (4.8)

where the sum spans all data points in all twelve sets of experiments. The results are
shown in figure 9 and suggest that the best fit is obtained with parameters C1 = 0.412,
C2 = 0.6 and Cν = 12.48, which we have adopted as standard throughout this paper.
The corresponding fit to Wendt’s experimental data is shown in figure 10. We note
that the fit is quite good though we are not able to fit all the curves equally well.
In particular, the experimental results for a stationary inner cylinder (black circles
on the right-hand panel) seem to deviate significantly from the predictions of our
model for all possible values of C2. Leaving this particular set of experiments out
of the least-square fitting procedure seems to reduce the optimal value of C2, but
not significantly (see the square symbols in figure 9, which have a minimum near
C2 = 0.55). We emphasize that the constraint on our parameters obtained by fitting
Wendt’s data is much less satisfactory than the two tight constraints provided by
the universal velocity profile of turbulent boundary layers. Therefore the estimate
C2 = 0.6 is to be regarded as tentative and approximate only.

We then tested the predictions of the model against Taylor’s (1936a) torque
measurements. Taylor’s data consist of eight sets of experiments for varying gap

† Wendt actually uses a quantity related to the Reynolds number, (60/2π)|Ωo − Ωi |/ν.
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Figure 9. Study of the model parameters that best fit Wendt’s (1933) experimental data. For
each value of C2, C1 is chosen such that κ =0.436 and Cν is chosen such that v0 = 6.15. The
corresponding values of C1 and Cν are shown as solid lines, with the relevant scales on the
left and right of the plot respectively. Using these parameters, the error E (as given by equa-
tion (4.8)) is calculated and shown as triangular symbols. The minimum error occurs for
C2 = 0.6. We also plot the error E calculated when leaving out the experimental results for
stationary inner cylinder as square symbols.
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Figure 10. Comparison between the predictions of the model for C1 = 0.412, C2 = 0.6 and
Cν = 12.48 and Wendt’s (1933) data extracted from his article, figure 9(c). Panel (a) corresponds
to his measurements for counter-rotating cylinders, and (b) corresponds to corotating cylinders.
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Figure 11. Comparison between Taylor’s original data (1936a) and the predictions of our
model with standard parameters. For each panel, the outer cylinder has radius ro = 4.05 cm
and the inner cylinder radius ri is given in cm. The upper branch corresponds to the torques
measured on the outer cylinder when the inner cylinder is rotating, and the lower branch
corresponds to torques measured on the inner cylinder when the outer cylinder is rotating.
The angular rotation rate Ω is related to N as Ω = 2πN . The dotted line shows the laminar
solution whereas the solid line is the prediction of the model. The quantity T/N2 is measured
in CGS units.

width; he compares the torques measured for similar Reynolds numbers† (as defined
by equation (4.7)) when only the inner cylinder is rotating, and when only the outer
cylinder is rotating. The results are presented in figure 11; the predictions of the
model show excellent agreement with the experimental data, even near onset, in
the case where only the inner cylinder is rotating. The agreement is also very good
(except for the two widest gap widths) in the case where only the outer cylinder
is rotating, except near onset. However, Taylor reports that the onset of instability
in the case where only the outer cylinder is rotating undergoes hysteresis (where
the turbulent solution can only be accessed through finite-amplitude perturbations);
since our model assumes that the turbulent solution is chosen whenever it exists, we

† Taylor actually uses a quantity related to the Reynolds number, Ω/2πν.
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represent only the turbulent branch of the hysteresis loop, whereas it appears that
Taylor’s data follows the laminar branch up to a critical Reynolds number that may
depend on the amount of noise present in his apparatus (see Schultz-Grunow 1959
for an assessment of the critical Reynolds number for the persistence of laminar flow
in a noise-free Couette–Taylor system).

4.2.3. Onset of instability in Couette–Taylor flows

Although our model was initially designed for fully developed turbulent flows at
very high Reynolds number, and in fact in the context of astrophysical magnetohy-
drodynamics (Ogilvie 2003), we now show that the addition of the viscous cor-
rection terms (see § 2) is also able to reproduce (qualitatively, and to some extent also
quantitatively) the onset of instability in the Couette–Taylor system.

The classic work of Taylor (1923) combined experimental and theoretical studies
of the onset of linear instability in the laminar Couette–Taylor flow for both corot-
ating and counter-rotating cylinders. Impressive agreement was found between the
appearance of axisymmetric Taylor vortices in the experiments and the occurrence of
an axisymmetric linear instability in the theoretical calculation. We have investigated
the linear stability of the laminar flow within the context of our model. To do this, we
linearize the Reynolds-stress equation about the laminar solution and seek solutions
of the form Rij = R̃ij (r) est . The linearized system of ordinary differential equations
admits a set of discrete modes, with the growth rate s appearing as an eigenvalue.
We solve this system numerically and identify the stability boundary as the position
in the parameter space where the largest eigenvalue passes through zero. The results
depend on Cν , but not on C1 or C2 as these two parameters appear only in nonlinear
terms.

The linear stability boundary predicted by our model is shown in figure 12 in
comparison with Taylor’s experimental results. For Cν =12.48 the agreement is quite
good (an even better fit can be obtained for Cν = 11). We therefore again find that,
although our model is designed principally to describe fully developed turbulence,
it also performs quite well in describing the onset of instability. Of course, Taylor
vortices themselves are not a turbulent flow, but our model does not make a clear
distinction between coherent and turbulent flows at relatively low Reynolds numbers.
The near coincidence between our linear stability results and Taylor’s is not trivial
because, unlike him, we do not represent or solve for the optimal axial wavenumber
of the linear disturbance.

Also shown in figure 12 is the nonlinear stability boundary which delimits the region
of parameter space in which our model predicts turbulent solutions to exist. The
discrepancy with Taylor’s results illustrates the fact that a finite-amplitude instability,
apparently not detected in Taylor’s (1923) experiments, may occur in the case of
counter-rotating cylinders. This idea is supported by the results of Coles (1965), who
reports on the existence of a well-defined hysteresis zone delimited by a boundary
qualitatively similar to our nonlinear stability boundary.

This boundary turns over and crosses the Rei =0 axis for finite Reo. The unstable
domain thus delimited for Rei < 0, Reo < 0 is the point-symmetric domain to the
one identified as a region of finite-amplitude shear instability in the quadrant
Rei > 0, Reo > 0 (see § 4.1.3 and figure 7).

4.2.4. Keplerian shear flows

An important unsolved problem in astrophysics concerns the hydrodynamic
stability of accretion disks in which gas flows in circular Keplerian orbits with
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Figure 12. Comparison between the predictions of our model for linear and nonlinear stability
of Couette–Taylor flow between two cylinders with ro =4.035 cm and ri as shown in the
plots, and Taylor’s (1923) experimental data for the onset of instability. The black symbols
correspond to Taylor’s data, the open symbols corresponds to the onset of nonlinear instability
as calculated with our full model for standard parameters. The solid line corresponds to the
onset of instability calculated through a linear stability analysis of our turbulent model for
Cν = 12.48 and the dotted lines show the same thing for Cν = 11.

Ω ∝ r−3/2. Although magnetohydrodynamic instabilities are known to be effective
in generating turbulent motion and angular momentum transport in disks that are
sufficiently ionized (e.g. Balbus & Hawley 1998), such mechanisms probably fail to
operate in some important circumstances such as in very weakly ionized regions of
protoplanetary disks.

Recently, Richard & Zahn (1999) suggested, not unreasonably, that the stability
of Keplerian flows might be deduced from the results of wide-gap Couette–Taylor
experiments. They extract from Taylor’s (1936a) and Wendt’s (1933) data that the
critical Reynolds number for instability, in the case where the inner cylinder is at rest,
varies roughly as d2/r2

m for wide gaps. From this result they deduce that there must
exist a local Reynolds number for rotating shear flows

ReRZ =
r3

ν

∣∣∣∣∂Ω

∂r

∣∣∣∣ (4.9)

with a critical value Rec,RZ � 6.3 × 105 for instability (see figure 13). If such an
abstraction of the Couette–Taylor experiments to Keplerian flows is indeed justified,
this criterion would suggest that Keplerian disks (which typically have Reynolds
numbers many orders of magnitude larger than this critical value) are indeed likely to
be turbulent. Numerical solutions of our model near the onset of nonlinear instability
in the case where the inner cylinder is at rest also reveal that the critical Reynolds
number for instability varies as d2/r2

m for wide gaps, although the proportionality
constant is lower (see figure 13). The same argument proposed by Richard & Zahn
(1999) applied to our results would therefore also suggest that Keplerian shear flows
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Figure 13. Critical Reynolds number Rec = min(Reo) for the onset of nonlinear instability in
the case where the inner cylinder is at rest, as a function of gap width (ro =4.05 cm for all
points, and ri is varied between 3.2 cm and 3.94 cm). The error bars reproduce Taylor’s own
interpretation of his data (1936a) with the size of the error bar corresponding to the extent
of the hysteresis loop. The dashed line is the fit proposed by Richard & Zahn (1999), with
Rec = 6.3 × 105(d/rm)2; the solid line is our own results, and the inclined dotted line is a fit for
the wide-gap limit with Rec = 2 × 105(d/rm)2. The two horizontal lines are critical Reynolds
numbers for plane Couette flow: Rec = 1300 is derived from Dauchot & Daviaud’s (1995)
experiments, and Rec = 412 is the prediction of our model.

should be unstable. However, a local analysis of our model predicts instability for
Keplerian shear flows in the limit of large Reynolds numbers only when C2/C1 > 8/3
(Ogilvie 2003), which is not the case for the standard model parameters chosen
in this numerical experiment. Hence, it is not clear that a generalization between
Couette–Taylor results with a stationary inner cylinder and Keplerian flows can be
made.

More generally, it is not clear that stability results for wall-bounded flows can
be applied to unbounded flows. The instability may be triggered precisely by the
presence of the boundaries (both the side walls, through the non-local effect of a
redistribution of the shear profile between the cylinders, and the bottom boundary,
through contaminating Ekman flows). For instance, in figure 14 we explore the
stability of Couette–Taylor systems with inner and outer cylinders in Keplerian
ratios (Ωir

3/2
i = Ωor

3/2
o ). As mentioned earlier, if walls were absent and the shear was

everywhere Keplerian, the local analysis of our model would only predict instability
if C2/C1 > 8/3. However, we find that for large enough Reynolds numbers, instability
can be found for ratios of C2/C1 < 8/3 in a wall-bounded experiment. This behaviour
is possible because the dimensionless Rayleigh discriminant φ of the laminar solution
is not uniform.

5. Discussion
In this paper we have investigated the nonlinear dynamics of turbulent shear

flows, with and without rotation, in the context of a simple but physically motivated
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Figure 14. Predictions of the model for the onset of instability in a Couette–Taylor system
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Reynolds number Rei,crit for instability to the Reynolds number corresponding to a Keplerian
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1/2.

closure of the equation governing the evolution of the Reynolds stress tensor. In
order to permit a detailed exploration of the nonlinear behaviour and to emphasize
the physical interpretation of the dynamics, the approach we have taken differs from
that of the conventional closure models used in engineering applications. We have
not developed a model of great algebraic sophistication and attempted to fit the large
number of parameters therein by applying a restricted class of constraints. Instead,
we have adopted a minimal closure of the Reynolds-stress equation in which the
modelled nonlinear terms have a clear interpretation and are as few in number as is
compatible with the physical requirements.

Our model, equation (2.9), retains the exact form of the linear terms representing
the advection of the turbulent fluctuations by the mean flow, their interaction with the
mean velocity gradient and the viscous diffusion of the Reynolds stress, while using
a minimal set of algebraic terms with three dimensionless parameters to represent
dissipation through a turbulent cascade (with parameter C1) and through direct
viscous damping (parameter Cν), as well as the tendency to return to isotropy
(parameter C2).

In a local analysis of homogeneous shear turbulence with or without rotation
(§ 3.1), our closure model reduces to an autonomous nonlinear dynamical system
whose fixed points, either stable or unstable, represent the laminar state and any
statistically steady turbulent states. We find that the behaviour of the system depends
on the Rayleigh discriminant (defined by equation (3.6)) of the rotating shear flow.
The model predicts that Rayleigh-unstable flows become turbulent at sufficiently
large Reynolds number through a linear instability associated with a supercritical (or,
rarely, subcritical) bifurcation. Flows that are Rayleigh-stable by a sufficiently large
margin are predicted not to support sustained turbulence however large the Reynolds
number. This behaviour is naturally consistent with Rayleigh’s stability criterion.
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Non-rotating (Rayleigh-neutral) shear flows and those that are Rayleigh-stable
by a sufficiently small margin can become turbulent through a nonlinear instability
associated with a subcritical bifurcation from infinite Reynolds number. In the non-
rotating case the laminar state admits algebraically growing infinitesimal disturbances
that are damped only on the viscous time scale Re/S. The nonlinear terms of the
model allow perturbations of finite amplitude to be sustained and the system evolves
to a non-trivial state of statistically steady turbulence. This behaviour of the model
strongly resembles the theory of subcritical transition to turbulence, developed by
Trefethen et al. (1993) and others, involving the transient amplification of disturbances
by a non-normal operator and a cooperative nonlinear feedback. The closure model
that we work with has the advantage of being able to represent the final turbulent
outcome of the transition process.

The analysis of Reynolds-stress models in homogeneous shear flow in terms of a
nonlinear dynamical system is not unique to our work (see e.g. Speziale, Gatski & Mac
Giolla Mhuiris 1990). However, the simplicity of our model permits an exhaustive
study of its dynamical properties and, by including the effects of a finite Reynolds
number, we are able to make a connection with the theory of subcritical transition
to turbulence in which the laminar state has a basin of attraction that diminishes as
the Reynolds number is increased. Similar techniques of analysis could of course be
applied to more sophisticated closure models and we believe that our findings are to
some extent generic.

The turbulent solutions are anisotropic as a result of shear and rotation, and in
the limit of large Reynolds number the shear stress behaves as in Prandtl’s mixing-
length theory, but with a prefactor that depends on the Rayleigh discriminant (see
equation (3.15)). As such, our model naturally captures the reduction, and eventually
suppression, of the turbulent energy dissipation for rapidly rotating flows (Speziale
et al. 1998).

When applied to wall-bounded turbulent shear flows (§ 3.2), the model predicts the
occurrence of a universal velocity profile close to a wall at large Reynolds number.
Outside the viscous sublayer, this profile has the logarithmic form predicted by
Prandtl’s mixing-length theory, and we derive two accurate constraints on the three
parameters from matching the most recent experimental data (Zagarola & Smits
1998).

We have also investigated in some detail the predictions of the model for the
occurrence and the characteristics of turbulent states in Couette–Taylor flow without
end effects (§ 4). Here, depending on the ratios of the radii and angular velocities of
the two cylinders, the distribution of the Rayleigh discriminant of the laminar solution
may be such that a local analysis would predict either linear instability or nonlinear
instability or complete stability in different regions of the flow. Furthermore, once
turbulence sets in, the angular velocity distribution and the corresponding Rayleigh
discriminant are significantly modified from those of the laminar solution. Therefore a
wide variety of behaviour is possible, including the existence of mixed states, in which
the turbulence is localized. It is worth noting that although we have restricted the
present analysis to solutions of maximal symmetry in the Couette–Taylor system, our
model may admit classes of more general solutions. For instance, relaxing the assum-
ption of azimuthal and axial translational symmetry could in principle help explain
observed phenomena such as spiral turbulence (Coles 1965; Hegseth et al. 1989) in
which regions of laminar and turbulent flows coexist separated by a helical interface.

By fitting the remaining parameter of our model, we are able to account
quite well for the qualitative behaviour and quantitative torque measurements in
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historical experiments on Couette–Taylor flow by Wendt (1933) and Taylor (1936a),
which have not been superseded. As an unexpected bonus, the model captures
reasonably accurately the appearance of Taylor vortices at the onset of linear ins-
tability.

It is appropriate to discuss at this point some of the implications of the
parameterization used in our model. The ratio C2/C1 represents the propensity of the
turbulence to return to isotropy. In a local analysis, it is found to determine the critical
value of the dimensionless Rayleigh discriminant for which high-Reynolds-number
turbulence can be sustained. Why these properties should be related can be explained
with reference to the system of equations (3.3). When the Rayleigh discriminant
Φ = 2Ω(2Ω − S) is positive, the terms 4ΩRxy and 2(S − 2Ω)Rxy in the equations for
Rxx and Ryy have opposite signs. Therefore either Rxx or Ryy lacks a positive source,
and the turbulence must decay, unless the C2 term comes into play. For a given
positive Rayleigh discriminant, the isotropizing tendency must be sufficiently great if
the turbulence is to be sustained.

In this work, although we have proposed values of the coefficients C1, C2 and Cν

after fitting experimental data, these values are only tentative and approximate and
we do not claim that such a simple model can provide great quantitative accuracy
in comparison with currently available closure models (cf. Choi & Lumley 2001). In
particular, the ratio C2/C1 is only weakly constrained through a comparison with
Wendt’s (1933) data, with a wide plausible range of roughly 0.4 to 1.

We draw attention again to the important problem of the hydrodynamic stability
of circular Keplerian motion in astrophysical accretion disks, in which the angular
velocity profile Ω ∝ r−3/2 is enforced by gravitational dynamics, not through the
boundaries. While Richard & Zahn (1999) sought to apply the findings of Couette–
Taylor experiments to accretion disks, our investigation of turbulent Couette–Taylor
flows suggests that caution is required in making such associations. According to our
model (taking C2/C1 < 8/3), Keplerian rotation is likely not to support statistically
steady turbulence in a local analysis, and may be nonlinearly stable no matter how
large the Reynolds number. We also find that this does not contradict the experimental
finding that Couette–Taylor flow with a stationary inner cylinder becomes turbulent
at large Reynolds number, and is even consistent with the possibility that a wide-
gap Couette–Taylor flow with the cylinders in a Keplerian ratio may be turbulent. In
addition, Couette–Taylor experiments are always contaminated to some degree by end
effects. We suggest that Couette–Taylor experiments may be of limited applicability
to the study of the nonlinear stability of Keplerian rotation, and that it can be instead
most usefully addressed in local numerical models such as that of the shearing box
(e.g. Balbus & Hawley 1998), which are free from end effects and also from the type
of radial boundary conditions that induce boundary layers. To date, no instability
has been found in such models, and it would be valuable to test this finding to very
high Reynolds numbers.

Finally, we emphasize that the philosophy behind the construction of simple turbu-
lence models such as the one adopted here is applicable to a range of more complex
problems such as magnetohydrodynamic turbulence (Ogilvie 2003), convection, or
mixing in stratified shear flows. Such extension is the subject of current investi-
gations.

P. G. acknowledges the support of New Hall and PPARC. G. I. O. acknowledges
the support of the Royal Society through a University Research Fellowship.
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Appendix A. Model equations in a general orthogonal curvilinear coordinate
system

Using Batchelor’s (1967) notation, the equivalent of equation (2.8) for the evolution
of the Reynolds stress tensor in general orthogonal curvilinear coordinates is

∂Rij

∂t
+

∑
k

[
ūk

hk

∂Rij

∂xk

+
Rkj

hk

∂ūi

∂xk

+
Rik

hk

∂ūj

∂xk

+
ūiRkj

hihk

∂hi

∂xk

+
ūkRij

hihk

∂hi

∂xk

+
ūjRik

hjhk

∂hj

∂xk

+
ūkRij

hjhk

∂hj

∂xk

− 2
ūkRkj

hihk

∂hk

∂xi

− 2
ūkRki

hjhk

∂hk

∂xj

]
= − C1L

−1R1/2Rij − C2L
−1R1/2

(
Rij − 1

3
Rδij

)
, (A 1)

where (h1, h2, h3) is (1, 1, 1) for Cartesian coordinates (x, y, z), or (1, r, 1) for
cylindrical coordinates (r, φ, z).

In the Cartesian case, the viscous correction terms follow from the decomposition

ν(u′
i,kku

′
j + u′

j,kku
′
i) = ν((u′

iu
′
j ),kk − 2u′

i,ku
′
j,k), (A 2)

where the first term on the right-hand side describes a viscous diffusion of the stresses
and the second term describes a direct decay of the stresses, which we then model as
−CννRij/L

2.
In order to obtain the form for the viscous corrections in general curvilinear

coordinates, we follow the same method used in the Cartesian case: we isolate
from the original terms ν(∇2u′)iu

′
j + ν(∇2u′)ju

′
i the tensor decay term −2ν(∇u′∇T u′)ij

(which is the covariant equivalent of −2νu′
i,ku

′
j,k), where ∇u′ is the matrix defined by

its columns

(∇u′) =

(
1

h1

∂u′

∂x1

,
1

h2

∂u′

∂x2

,
1

h3

∂u′

∂x3

)
. (A 3)

In this expression, u′ = u′
1e1 + u′

2e2 + u′
3e3 and the derivatives of the unit vectors

(e1, e2, e3) are given by Batchelor (1967, p. 598). We model the decay terms as
−CννRij/L

2, and keep the remaining diffusion terms unchanged thereby defining the
Laplacian of the second-rank tensor (∇2R)ij . Hence with this method the viscous
terms in equation (2.9) are then simply

−Cνν

L2
Rij + ν(∇2R)ij , (A 4)

with

(∇2R)rr = ∇2Rrr − 4

r2

∂Rrφ

∂φ
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2

r2
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r2
,

(∇2R)φz = ∇2Rφz +
2

r2

∂Rrz

∂φ
− Rφz

r2
,




(A 5)

in cylindrical coordinates for instance.
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For an axisymmetric flow with translational symmetry in z and ū = rΩ(r) eφ in a
cylindrical geometry the evolution equations for the Reynolds stress tensor are

∂Rrr

∂t
− 4ΩRrφ = −C1 + C2

L
R1/2Rrr +

C2

3L
R3/2 − νCν

L
Rrr + ν(∇2R)rr ,

∂Rφφ

∂t
+ 2(2Ω − S)Rrφ = −C1 + C2

L
R1/2Rφφ +

C2

3L
R3/2 − νCν

L
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(A 6)

where

S = −r
dΩ

dr
. (A 7)

Appendix B. Asymptotic solution of the turbulent Couette–Taylor flow for
large Reynolds number and large Rossby number

In the limits of large Rossby number (as expected for a small gap) and large
Reynolds number, the angular momentum equation (4.2) can be approximated (to
first order in Ro−1) by

r2κ2L2S|S| + 2r2κ2L2Ω |S|9C1

C2

=
T

2πhρ
, (B 1)

where κ is the von Kármán constant defined in equation (3.28). This provides a
quadratic equation for S which can be inverted, and yields (in the same limit)

S = −r
dΩ

dr
= −9C1

C2

Ω + sign(S)
1

rL(r)κ

√
|T |

2πhρ
. (B 2)

This equation must be integrated separately in each interval (ri, rm] and [rm, ro): in
(ri, rm],

Ω(rm)r−9C1/C2
m − Ω(r)r−9C1/C2 = −sign(S)

κ

√
|T |

2πhρ

∫ rm

r

r ′−2−9C1/C2

r ′ − ri

dr ′, (B 3)

and in [rm, ro),

Ω(r)r−9C1/C2 − Ω(rm)r−9C1/C2
m = −sign(S)

κ

√
|T |

2πhρ

∫ r

rm

r ′−2−9C1/C2

ro − r ′ dr ′. (B 4)

Let α = 9C1/C2 + 2. The integrals in equations (B 3) and (B 4) have a logarithmic
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singularity as r → ri and r → ro, which can be isolated as∫ rm

r

r ′−α

r ′ − ri

dr ′ = f (r; rm, ri, α) − r−α
i ln

(
r − ri

rm − ri

)
. (B 5)

This defines the function f uniquely. The logarithmic singularity naturally matches
onto the boundary layer solutions near the walls.

We use the results of § 3.2 to write the boundary layer solution explicitly. Near
r = ri , but outside the viscous sublayer,

Ω(r) = Ωi − sign(S)

r2
i

√
|T |

2πhρ

[
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1

κ
ln
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√
|T |
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)]
, (B 6)

whereas near r = ro,

Ω(r) = Ωo +
sign(S)

r2
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√
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2πhρ

[
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1
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√
|T |

2πhρ

)]
. (B 7)

Matching the inner (B 6), (B 7) and outer (B 3), (B 4) solutions near the walls, and
continuity across the mid-point rm provides an equation for the torque, which extends
the Prandtl–von Kármán skin-friction law for Couette–Taylor flows:

1√
Cf

= N log10(Re
√

Cf ) + M, (B 8)

where we have defined† Re = |Ωi −Ωo|(r2
o −r2

i )/(2ν), Cf = T/Re2ρhν2 and the friction
law coefficients M and N as

N =
sign(S)

2κ
√

2π

|Ωi − Ωo|
(
r2
o − r2

i

)
Ωir

2−α
i − Ωor2−α

o

(
r−α
i + r−α

o

)
ln 10,

M =
sign(S)

2κ
√

2π

|Ωi − Ωo|(r2
o − r2

i )

Ωir
2−α
i − Ωor2−α

o

[(
r−α
i + r−α

o

) (
ln

ro − ri√
8π

+ κv0(C1, C2, Cν)

)

+ (f (ri; rm, ri, α) + f (ro; rm, ro, α)) −
(

ln ri

rα
i

+
ln ro

rα
o

)]
.




(B 9)

Note that in the limit where the contribution from rotation on the Reynolds stresses
is neglected (Ro−1 = 0), the solution in the bulk of the fluid can be written out as
equations (B 3) and (B 4) with α = 2 and

f (r; rm, ri, 2) =
1

r2
i

(
1

rm

− 1

r
+ ln r − ln rm

)
. (B 10)

In figure 15 we compare the velocity profiles obtained by numerical integration
to those derived from asymptotic analysis, for three different gap widths. We find
that the asymptotics only provide accurate results for d/ro � 0.02. This somewhat
disappointing range of applicability of the Ro 
 1 asymptotic analysis is due to
the great efficiency with which turbulence redistributes the shear, which reduces
the Rossby number in the interior of the flow compared to that of the laminar
solution.

† Other authors who use a different definition of the Reynolds number Re∗ obtain skin-friction
law coefficients M∗ and N ∗ which are related to ours through the expression M∗ = (Re∗/Re)M and
N ∗ = (Re∗/Re)N .
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Figure 15. Comparison between complete numerical solution (solid line) and asymptotic
analytical solution (dotted line) for three gap widths d/ro = 0.05, 0.02 and 0.01 respectively,
for a Reynolds number of the flow Re = 106.
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